Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Lancet Reg Health Eur ; 23: 100513, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2049611

ABSTRACT

Background: The two-dose BNT162b2 (Pfizer-BioNTech) vaccine has demonstrated high efficacy against COVID-19 disease in clinical trials of children and young people (CYP). Consequently, we investigated the uptake, safety, effectiveness and waning of the protective effect of the BNT162b2 against symptomatic COVID-19 in CYP aged 12-17 years in Scotland. Methods: The analysis of the vaccine uptake was based on information from the Turas Vaccination Management Tool, inclusive of Mar 1, 2022. Vaccine safety was evaluated using national data on hospital admissions and General Practice (GP) consultations, through a self-controlled case series (SCCS) design, investigating 17 health outcomes of interest. Vaccine effectiveness (VE) against symptomatic COVID-19 disease for Delta and Omicron variants was estimated using a test-negative design (TND) and S-gene status in a prospective cohort study using the Scotland-wide Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. The waning of the VE following each dose of BNT162b2 was assessed using a matching process followed by conditional logistic regression. Findings: Between Aug 6, 2021 and Mar 1, 2022, 75.9% of the 112,609 CYP aged 16-17 years received the first and 49.0% the second COVID-19 vaccine dose. Among 237,681 CYP aged 12-15 years, the uptake was 64.5% and 37.2%, respectively. For 12-17-year-olds, BNT162b2 showed an excellent safety record, with no increase in hospital stays following vaccination for any of the 17 investigated health outcomes. In the 16-17-year-old group, VE against symptomatic COVID-19 during the Delta period was 64.2% (95% confidence interval [CI] 59.2-68.5) at 2-5 weeks after the first dose and 95.6% (77.0-99.1) at 2-5 weeks after the second dose. The respective VEs against symptomatic COVID-19 in the Omicron period were 22.8% (95% CI -6.4-44.0) and 65.5% (95% CI 56.0-73.0). In children aged 12-15 years, VE against symptomatic COVID-19 during the Delta period was 65.4% (95% CI 61.5-68.8) at 2-5 weeks after the first dose, with no observed cases at 2-5 weeks after the second dose. The corresponding VE against symptomatic COVID-19 during the Omicron period were 30.2% (95% CI 18.4-40.3) and 81.2% (95% CI 77.7-84.2). The waning of the protective effect against the symptomatic disease began after five weeks post-first and post-second dose. Interpretation: During the study period, uptake of BNT162b2 in Scotland has covered more than two-thirds of CYP aged 12-17 years with the first dose and about 40% with the second dose. We found no increased likelihood of admission to hospital with a range of health outcomes in the period after vaccination. Vaccination with both doses was associated with a substantial reduction in the risk of COVID-19 symptomatic disease during both the Delta and Omicron periods, but this protection began to wane after five weeks. Funding: UK Research and Innovation (Medical Research Council); Research and Innovation Industrial Strategy Challenge Fund; Chief Scientist's Office of the Scottish Government; Health Data Research UK; National Core Studies - Data and Connectivity.

3.
Euro Surveill ; 27(21)2022 05.
Article in English | MEDLINE | ID: covidwho-1875327

ABSTRACT

IntroductionIn July and August 2021, the SARS-CoV-2 Delta variant dominated in Europe.AimUsing a multicentre test-negative study, we measured COVID-19 vaccine effectiveness (VE) against symptomatic infection.MethodsIndividuals with COVID-19 or acute respiratory symptoms at primary care/community level in 10 European countries were tested for SARS-CoV-2. We measured complete primary course overall VE by vaccine brand and by time since vaccination.ResultsOverall VE was 74% (95% CI: 69-79), 76% (95% CI: 71-80), 63% (95% CI: 48-75) and 63% (95% CI: 16-83) among those aged 30-44, 45-59, 60-74 and ≥ 75 years, respectively. VE among those aged 30-59 years was 78% (95% CI: 75-81), 66% (95% CI: 58-73), 91% (95% CI: 87-94) and 52% (95% CI: 40-61), for Comirnaty, Vaxzevria, Spikevax and COVID-19 Vaccine Janssen, respectively. VE among people 60 years and older was 67% (95% CI: 52-77), 65% (95% CI: 48-76) and 83% (95% CI: 64-92) for Comirnaty, Vaxzevria and Spikevax, respectively. Comirnaty VE among those aged 30-59 years was 87% (95% CI: 83-89) at 14-29 days and 65% (95% CI: 56-71%) at ≥ 90 days between vaccination and onset of symptoms.ConclusionsVE against symptomatic infection with the SARS-CoV-2 Delta variant varied among brands, ranging from 52% to 91%. While some waning of the vaccine effect may be present (sample size limited this analysis to only Comirnaty), protection was 65% at 90 days or more between vaccination and onset.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Europe/epidemiology , Humans , Influenza, Human/prevention & control , Primary Health Care , SARS-CoV-2 , Vaccination
6.
Lancet Respir Med ; 9(12): 1439-1449, 2021 12.
Article in English | MEDLINE | ID: covidwho-1440430

ABSTRACT

BACKGROUND: The UK COVID-19 vaccination programme has prioritised vaccination of those at the highest risk of COVID-19 mortality and hospitalisation. The programme was rolled out in Scotland during winter 2020-21, when SARS-CoV-2 infection rates were at their highest since the pandemic started, despite social distancing measures being in place. We aimed to estimate the frequency of COVID-19 hospitalisation or death in people who received at least one vaccine dose and characterise these individuals. METHODS: We conducted a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) national surveillance platform, which contained linked vaccination, primary care, RT-PCR testing, hospitalisation, and mortality records for 5·4 million people (around 99% of the population) in Scotland. Individuals were followed up from receiving their first dose of the BNT162b2 (Pfizer-BioNTech) or ChAdOx1 nCoV-19 (Oxford-AstraZeneca) COVID-19 vaccines until admission to hospital for COVID-19, death, or the end of the study period on April 18, 2021. We used a time-dependent Poisson regression model to estimate rate ratios (RRs) for demographic and clinical factors associated with COVID-19 hospitalisation or death 14 days or more after the first vaccine dose, stratified by vaccine type. FINDINGS: Between Dec 8, 2020, and April 18, 2021, 2 572 008 individuals received their first dose of vaccine-841 090 (32·7%) received BNT162b2 and 1 730 918 (67·3%) received ChAdOx1. 1196 (<0·1%) individuals were admitted to hospital or died due to COVID-19 illness (883 hospitalised, of whom 228 died, and 313 who died due to COVID-19 without hospitalisation) 14 days or more after their first vaccine dose. These severe COVID-19 outcomes were associated with older age (≥80 years vs 18-64 years adjusted RR 4·75, 95% CI 3·85-5·87), comorbidities (five or more risk groups vs less than five risk groups 4·24, 3·34-5·39), hospitalisation in the previous 4 weeks (3·00, 2·47-3·65), high-risk occupations (ten or more previous COVID-19 tests vs less than ten previous COVID-19 tests 2·14, 1·62-2·81), care home residence (1·63, 1·32-2·02), socioeconomic deprivation (most deprived quintile vs least deprived quintile 1·57, 1·30-1·90), being male (1·27, 1·13-1·43), and being an ex-smoker (ex-smoker vs non-smoker 1·18, 1·01-1·38). A history of COVID-19 before vaccination was protective (0·40, 0·29-0·54). INTERPRETATION: COVID-19 hospitalisations and deaths were uncommon 14 days or more after the first vaccine dose in this national analysis in the context of a high background incidence of SARS-CoV-2 infection and with extensive social distancing measures in place. Sociodemographic and clinical features known to increase the risk of severe disease in unvaccinated populations were also associated with severe outcomes in people receiving their first dose of vaccine and could help inform case management and future vaccine policy formulation. FUNDING: UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Scottish Government, and Health Data Research UK.


Subject(s)
BNT162 Vaccine , COVID-19 , ChAdOx1 nCoV-19 , Hospitalization/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/administration & dosage , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19/administration & dosage , Female , Hospitals , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Scotland/epidemiology , Vaccination , Young Adult
7.
Euro Surveill ; 26(29)2021 07.
Article in English | MEDLINE | ID: covidwho-1323061

ABSTRACT

We measured COVID-19 vaccine effectiveness (VE) against symptomatic SARS-CoV-2 infection at primary care/outpatient level among adults ≥ 65 years old using a multicentre test-negative design in eight European countries. We included 592 SARS-CoV-2 cases and 4,372 test-negative controls in the main analysis. The VE was 62% (95% CI: 45-74) for one dose only and 89% (95% CI: 79-94) for complete vaccination. COVID-19 vaccines provide good protection against COVID-19 presentation at primary care/outpatient level, particularly among fully vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , COVID-19 Vaccines , Europe , Humans , Primary Health Care
8.
Lancet Digit Health ; 3(8): e517-e525, 2021 08.
Article in English | MEDLINE | ID: covidwho-1294384

ABSTRACT

BACKGROUND: As the COVID-19 pandemic continues, national-level surveillance platforms with real-time individual person-level data are required to monitor and predict the epidemiological and clinical profile of COVID-19 and inform public health policy. We aimed to create a national dataset of patient-level data in Scotland to identify temporal trends and COVID-19 risk factors, and to develop a novel statistical prediction model to forecast COVID-19-related deaths and hospitalisations during the second wave. METHODS: We established a surveillance platform to monitor COVID-19 temporal trends using person-level primary care data (including age, sex, socioeconomic status, urban or rural residence, care home residence, and clinical risk factors) linked to data on SARS-CoV-2 RT-PCR tests, hospitalisations, and deaths for all individuals resident in Scotland who were registered with a general practice on Feb 23, 2020. A Cox proportional hazards model was used to estimate the association between clinical risk groups and time to hospitalisation and death. A survival prediction model derived from data from March 1 to June 23, 2020, was created to forecast hospital admissions and deaths from October to December, 2020. We fitted a generalised additive spline model to daily SARS-CoV-2 cases over the previous 10 weeks and used this to create a 28-day forecast of the number of daily cases. The age and risk group pattern of cases in the previous 3 weeks was then used to select a stratified sample of individuals from our cohort who had not previously tested positive, with future cases in each group sampled from a multinomial distribution. We then used their patient characteristics (including age, sex, comorbidities, and socioeconomic status) to predict their probability of hospitalisation or death. FINDINGS: Our cohort included 5 384 819 people, representing 98·6% of the entire estimated population residing in Scotland during 2020. Hospitalisation and death among those testing positive for SARS-CoV-2 between March 1 and June 23, 2020, were associated with several patient characteristics, including male sex (hospitalisation hazard ratio [HR] 1·47, 95% CI 1·38-1·57; death HR 1·62, 1·49-1·76) and various comorbidities, with the highest hospitalisation HR found for transplantation (4·53, 1·87-10·98) and the highest death HR for myoneural disease (2·33, 1·46-3·71). For those testing positive, there were decreasing temporal trends in hospitalisation and death rates. The proportion of positive tests among older age groups (>40 years) and those with at-risk comorbidities increased during October, 2020. On Nov 10, 2020, the projected number of hospitalisations for Dec 8, 2020 (28 days later) was 90 per day (95% prediction interval 55-125) and the projected number of deaths was 21 per day (12-29). INTERPRETATION: The estimated incidence of SARS-CoV-2 infection based on positive tests recorded in this unique data resource has provided forecasts of hospitalisation and death rates for the whole of Scotland. These findings were used by the Scottish Government to inform their response to reduce COVID-19-related morbidity and mortality. FUNDING: Medical Research Council, National Institute for Health Research Health Technology Assessment Programme, UK Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, Scottish Government Director General Health and Social Care.


Subject(s)
COVID-19 , Forecasting , Hospitalization , Models, Statistical , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Nucleic Acid Testing/trends , Child , Child, Preschool , Comorbidity/trends , Female , Humans , Incidence , Infant , Infant, Newborn , Information Storage and Retrieval , Male , Middle Aged , Primary Health Care/statistics & numerical data , Risk Factors , Scotland/epidemiology , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL